
Factors Associated with Return to Ambulation Following Major Lower Limb Amputation at an Urban US Tertiary Healthcare Center

Statement of Purpose and Literature Review

Despite a good understanding of risk factors for amputation and the development of multidisciplinary diabetic foot amputation prevention teams, literally hundreds of major limb amputations are performed worldwide on the daily basis. One relatively universal goal following major limb amputation is for the patient to return to ambulation with a prosthetic. In fact, however, there is little published evidence on how many patients actually return to ambulation following major limb amputation and what factors are associated with a successful return to ambulation [1-6].

The objectives of this retrospective, observational investigation were to 1) determine what percentage of patients return to ambulation within one year following major limb amputation, and 2) assess which patient factors may be associated with successful return to ambulation within one year following major limb amputation at an urban US tertiary care health system with a multidisplinary limb salvage team.

Methodology

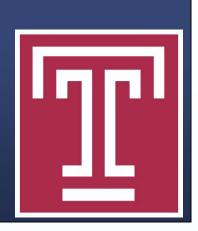
Following approval by our institution's IRB (Protocol #22923), a retrospective chart review was performed over a two-year data collection period allowing for at least 12 months of follow-up for all major lower limb amputations performed at a single tertiary health care system. The primary outcome measure was documented ambulation in a prosthetic within one year following major lower limb amputation. Comparisons were performed between differing end-result amputation groups (unilateral below knee [BKA], unilateral above knee [AKA], bilateral major amputation and "other" major amputation) as well as between ambulators vs. non-ambulators. Extracted patient demographics included age, gender, race/ethnicity, insurance coverage, follow-up, mortality, living situation, body mass index, smoking history and a specific history of diabetes, end-stage renal disease, COPD, dementia, coronary artery disease, and peripheral arterial disease.

Laura E. Sansosti, DPM^a, Amanda Wiest, DPM^a, Eric Choi, MD^b, and Andrew J. Meyr, DPM FACFAS^c

^aResident, Temple University Hospital Podiatric Surgical Residency Program, Philadelphia, Pennsylvania ^bAssociate Professor and Chairman, Department of Vascular Surgery, Temple University Hospital, Philadelphia, Pennsylvania ^bAssociate Professor and Residency Program Director, Department of Podiatric Surgery, Temple University School of Podiatric Medicine and Temple University Hospital, Philadelphia, Pennsylvania (AJMeyr@gmail.com)* *Please don't hesitate to contact AJM with any questions. He's happy to provide you with a .pdf of this poster if you email him.

We extracted data on one hundred and sixty-seven consecutive patients (42.05%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation, 55 patients (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulation (31.25%) had a final result of a unilateral BKA with a 50.0% return to ambulateral BKA with a 50. of an unilateral AKA with 20.0% return to ambulation, 35 patients (19.89%) had a final result of a bilateral major limb amputation with a 33.3% return to ambulation. Patients whose final result was a BKA as opposed to an AKA were statistically more likely to be younger (p=0.0036), Hispanic (p=0.0036), ambulatory pre-operatively (p=0.0004), diabetic (p=0.0126), have ESRD (p=0.0095), and have an amputation that primarily healed without requiring additional intervention (p<0.0001). Patients whose final result was an AKA as opposed to a BKA were more likely to have a history of dementia (p<0.0001) and at least one attempted revascularization (p=0.0005). Ambulators were statistically more likely to be younger (p<0.0001), of male gender (p=0.0255), have follow-up > 6 months (p<0.0001), be ambulatory pre-operatively (p=0.0008), return home following their amputation (p<0.0001), and have an amputation that primarily healed without requiring additional intervention (p=0.0155). Non-ambulators were statistically more likely to be deceased at one post-operative year (p=0.0169), have a history of PAD (p=0.0058), and have at least one attempted revascularization (p<0.0001).

Full study results are demonstrated in the following tables. Table 1 (Left) demonstrates descriptive statistics and a comparison between patients undergoing unilateral BKA vs. unilateral AKA. Table 2 (center) demonstrates descriptive statistics and a comparison between ambulators vs. non-ambulators in a pooled BKA/AKA group. Table 3 (right) demonstrates descriptive statistics and a comparison between ambulators vs. non-ambulators in those undergoing unilateral BKA. Descriptive data of continuous variables is reported in terms of the mean ± standard deviation (range) and compared with the unpaired t-test. Descriptive data of categorical variables is reported in terms of the frequency count (%) and compared with the Fisher's exact test. A level of significance was set at p < 0.05.


′ariable Iean ± SD (range) r	BKA (n=74)	AKA (n=55)	Statistical Comparison	Variable Mean ± SD (range) or	Ambulator (n=48)	Non-Ambulator (n=81)	Statistical Comparison	Variable Mean ± SD (range) or	BKA Ambulator (n=37)	BKA Non- ambulator (n=37)	Statistical Comparison
Frequency count (%) Age (years)	58.78 ± 13.16 (21-92)	66.07 ± 14.65 (18-97)	P = 0.0036*	Frequency count (%)				Frequency count (%)		(1-07)	
Gender	45 (60.81) Male;	32 (58.18) Male;	P = 0.0036* P = 0.8563	Age (years)	54.75 ± 14.01 (18-83)	66.12 ± 12.65 (32-97)	D 0.0001*	Age (years)	56.0 ± 12.17 (21-83)	61.57 ± 13.68 (32-92)	P = 0.0684
lace	29 (39.19) Female 32 (43.24) black;	23 (41.82) Female 30 (54.55) black;	Black (p=0.2176)	- Gender	35 (72.92) male;	42 (51.85) male;	P<0.0001* P=0.0255*	Gender	27 (72.97) male; 10 (27.03) female	18 (48.65) male; 19 (51.35) female	P = 0.0559
	21 (28.38) white; 1 (1.35) Asian;	18 (32.73) white; 7 (12.73) other	White (p=0.6988) Other (p=0.0507)	Race	13 (27.08) female 25 (52.08) Black; 11 (22.92) White;	39 (48.15) female 38 (46.91) Black; 28 (34.57) White;	Black (p=0.5896); White (p=0.2338);	Race	19 (51.35) black; 7 (18.92) white;	14 (37.84) black; 14 (37.84) white;	Black (p=0.3497); White (p=0.1208);
Ethnicity	20 (27.03) other 18 (24.32) Hispanic; 56 (75 (2) and	5 (9.09) Hispanic;	P = 0.0353*	-	12 (25.0) Other	15 (18.52) Other	Other (p=0.5036)		11 (29.73) other	9 (24.32) other	Other (0.7940)
Laterality	56 (75.68) not 35 (47.30) right; 30(52 70) loft	50 (90.91) not 29 (52.73) right; 26 (47 27) left	P=0.5954	Ethnicity	12 (25.0) Hispanic; 36 (75.0) not	11 (13.58) Hispanic; 70 (86.42) not	P=0.1521	Ethnicity	11 (29.73) Hispanic; 26 (70.27) not	7 (18.92) Hispanic; 30 (81.08) not	P = 0.4169
nsurance	39(52.70) left 26 (35.14) Medicare; 26 (35.14) Medicaid;	26 (47.27) left 19 (34.55) Medicare; 20 (36.36) Medicaid;	Medicare (p=1.00) Medicaid (p=1.00)	Laterality	23 (47.92) right; 25 (52.08) left	40 (49.38) right; 41 (50.62) left	P=1.00	Laterality	18 (48.65) right; 19 (51.35) left	17 (45.95) right; 20 (54.05) left	P = 1.00
6 month F/U with	22 (29.73) Private 47 (63.51) yes;	16 (29.10) Private 28 (50.91) yes;	Private (p=1.00) P=0.2064	Insurance	16 Medicare 16 Medicaid 16 Private	30 Medicare 30 Medicaid 21 Private	Medicare (p=0.7075); Medicaid (p=0.7075); Private (p=0.4226)	Insurance	15 Medicare 11 Medicaid 11 Private	12 Medicare 16 Medicaid	Medicare (p=0.4734); Medicaid (p=0.3342); Private (p=0.7940)
ascular and/or ehab? year mortality	27 (36.49) no 70 (94.59) alive;	27 (49.09) no 46 (83.64) alive;	P=0.0726	6 month F/U with Vascular and/or Rehab?	41 (85.42) yes; 7 (14.58) no	34 (41.98) yes; 47 (58.02) no	P<0.0001*	6 month F/U with Vascular and/or Rehab?	32 (86.49) yes; 5 (13.51) no	9 Private 15 (40.54) yes; 22 (59.46) no	P < 0.0001*
mbulatory Pre-op?	4 (5.41) deceased 70 (94.59) yes;	9 (16.36) deceased 39 (70.91) yes;	P=0.0004*	1 year mortality	47 (97.92) alive; 1 (2.08) deceased	68 (83.95) alive; 13 (16.05) deceased	P=0.0169*	1 year mortality	36 (97.30) alive; 1 (2.70) deceased	34 (91.89) alive; 3 (8.11) deceased	P = 0.6145
onfirmed ambulatory st-op?	4 (5.41) no 37 (50.0) yes; 27 (50.0) no or unknown	16 (29.09) no 11 (20.0) yes; 44 (80.0) no or unknown	P=0.0005*	Ambulatory Pre-op?	47 (97.92) yes; 1 (2.08) no	62 (76.54) yes; 19 (23.46) no	P=0.0008*	Ambulatory Pre-op?	37 (100.0) yes; 0 (0.00) no	33 (89.19) yes; 4 (10.81) no	P = 0.1148
re-Op Living tuation	64 (86.49) home; 5 (6.76) nursing facility;	48 (87.27) home; 7 (12.73) nursing facility	P=1.00	Pre-Op Living Situation	45 (93.75) living at home; 3 (6.25) not or unknown	68 (83.95) lived at home; 13 (16.05) no	P=0.1656	Pre-Op Living Situation	35 (94.59) lived at home; 2 (5.41) no	31 (83.78) lived at home; 6 (16.22) no	P = 0.2611
Returned home	5 (6.76) unknown 32 (43.24) home;	25 (45.45) home;	P=0.8586	% Returned home Post-Op	34 (70.83) home; 14 (29.17) not or unknown	23 (28.40) home; 58 (71.60) not or unknown	P<0.0001*	% Returned home Post-Op	23 (62.16) home; 14 (37.84) other	9 (24.32) home; 28 (75.68) other	P = 0.0021*
ost-Op	42 (56.76) not or unknown	30 (54.55) not or unknown	1-0.0000	DM?	35 (72.92) yes; 13 (27.08) no	60 (74.07) yes; 21 (25.93) no	P=1.00	DM?	30 (81.08) yes; 7 (18.92) no	31 (83.78) yes; 6 (16.22) no	P = 1.00
M?	61 (82.43) yes; 13 (17.57) no	34 (61.82) yes; 21 (38.18) no	P=0.0146*	HbA1c	8.57 ± 2.46% (5.8-15.6) (n=27)	8.08 ± 2.45% (5.3-14.0) (n=39)	P=0.4281	HbA1c	8.72 ± 2.63% (5.8-15.6%) (n=23)	8.80 ± 2.81% (5.3-14.0%) (n=16)	P = 0.9258
DA1c	8.75 ± 2.67% (5.3-15.6) (n=39)	7.60 ± 1.93% (6.83-8.36) (n=27)	P=0.0598	BMI	28.25 ± 5.85 (18.5-48)	27.41 ± 7.71 (17.3-57)	P=0.5305	BMI	28.21 ± 5.57 (21-48) (n=35)	28.48 ± 8.13 (19-57) (n=27)	P = 0.8789
MI	28.52 ± 6.69 (19-57) (n=60)	27.08 ± 7.33 (18.4 -53) (n=54)	P=0.2751	ESRD?	(n=46) 9 (18.75) yes;	(n=70) 14 (17.28) yes;	P=0.8169	ESRD?	9 (24.32) yes; 28 (75.68) no	10 (27.03) yes; 27 (72.97) no	P = 1.00
SRD?	19 (25.68) yes; 55 (74.32) no	4 (7.27) yes; 51 (92.73) no	P=0.0095*	COPD?	39 (81.25) no 3 (6.25) yes;	67 (82.72) no 12 (14.81) yes;	P=0.1671	COPD?	3 (8.11) yes; 34 (91.89) no	6 (16.22) yes; 31 (83.78) no	P = 0.4790
OPD?	9 (12.16) yes; 65 (87.87) no 44 (59.46) yes;	6 (10.91) yes; 49 (89.09) no 40 (72.73) yes;	P=1.00 P=0.1375	Any tobacco history?	45 (93.75) no 31 (64.58) yes;	69 (85.19) no 53 (65.43) yes;	P=1.00	Dementia?	37 (100.0) no; 0 (0.0) yes	37 (100.0) no; 0 (0.0) yes	P = 1.00
ementia?	30 (40.54) no 0 (0.0) yes;	15 (27.27) no 13 (23.64) yes;	P<0.0001*	Dementia?	17 (35.42) no 0 (0.0) yes;	28 (34.57) no 13 (16.05) yes;	P=0.0019	Any tobacco history?	22 (59.46) yes; 15 (40.54) no	22 (59.46) yes; 15 (40.54) no	P = 1.00
AD?	74 (100.0) no 32 (43.24) yes;	42 (76.36) no 31 (56.36) yes;	P=0.1574	CAD?	48 (100.0) no 22 (45.83) yes;	68 (83.95) no 44 (54.32) yes; 27 (45 50)	P=0.3685	CAD?	15 (40.54) yes; 22 (59.46) no	17 (45.95) yes; 20 (54.05) no	P = 0.8147
AD?	42 (56.76) no 46 (62.16) yes;	24 (43.64) no 43 (78.18) yes;	P=0.0570	PAD?	26 (54.17) no 28 (58.33) yes; 26 (54.17) no	37 (45.68) no 61 (75.31) yes; 20 (24.60) nz	P=0.0058*	PAD?	21 (56.76) yes; 16 (43.24) no	25 (67.57) yes; 12 (32.43) no	P = 0.4725
listory of	28 (37.84) no 26 (35.14) yes; 48 (64.86) no	12 (21.82) no 36 (65.45) yes; 10 (24.55) no	P=0.0008*	History of Revascularization?	26 (54.17) no 14 (29.17) yes; 34 (70.83) no	20 (24.69) no 60 (74.07) yes; 21 (25.93) no	P<0.0001*	History of Revegenderization?	10 (27.03) yes;	16 (43.24) yes;	P = 0.2231
Revascularization? Amputation Healed or Require Secondary	48 (64.86) no 65 (87.84) healed primarily;	19 (34.55) no 32 (58.18) healed primarily;	P=0.0002*	Amputation Healed or Require Secondary	43 (89.58) healed; 5 (10.42) required	57 (70.37) healed; 24 (29.63) required intervention	P=0.0155*	Revascularization? Amputation Healed or Require Secondary	27 (72.97) no 35 (94.59) healed; 2 (5.41) required intervention	21 (56.76) no 32 (86.49) healed; 5 (13.51) required interventior	P = 0.4297
Procedure?	9 (12.16) required intervention or revision	23 (41.82) required intervention or revision		Procedure?	intervention or revision	or revision		Procedure?	or revision	or revision	1

Results

eve these results emphasize the importance of follow-up from a limb salvage utation. The role of the team should not end with a healed amputation stump, e patient has achieved their maximal functional outcome.

present patient demographic variables associated with amputation and s that has the potential to be useful in surgical decision planning. This have benefit in determining which patients may be most likely to have a ollowing a specific level of major amputation. We believe this information our patient education and consent process.

investigation provides evidence on the outcome of major amputation at an healthcare center with a multidisplinary limb salvage team. Major amputation ne that often occurs despite our best efforts, and we hope these findings r care of patients should extend beyond what is sometimes viewed as a short-term tment "failure".

Discussion

ation, critical readers are encouraged to review the study design and results and reach their own conclusions, while the rpretation of the specific results. As scientists, we also never consider data to be definitive, but do think that these results *uture investigation*.

gs of rate of ambulation following major lower limb amputation at an urban care center with a multidisplinary limb salvage team:

a lower than hypothesized documented rate of successful ambulation with a d not observe an ambulation rate >50% in any major amputation group

sizing the importance of limb salvage techniques and perhaps demonstrating ation may not be as definitive or functional as is sometimes thought.

atients may function well with a major amputation, we found that this inority of our urban cohort.

References

ontree SE, Cull DL, Messich HS, Robertson RT, Langan EM, York JW, Carsten CG, Snyder BA, Jackson MR, Youkey JJ postoperative functional outcomes after major lower limb amputation: an analysis of 553 consecutive patients. J Vasc Surg. 2005 Aug

e D, Kurichi JE, Ripley DC, Brooks DM, Bidelspach DE, Bates BE. Prognostic differences for functional recovery after major lower limb and type of inpatient rehabiliation services in the Veterans Health Administration. PM R. 2010 Apr; 2(4): 232-43. t M, Conti Mica MR, El-Amraoui A, O'Halloran P, Attinger CE. Outcomes of 294 transtibial amputations with the posterior myocutaneous 2014 Mar: 13(1): 33-40.

, Regensteiner JG, Schnickel GT, Klenke WA, et al. Functional outcome in a contemporary series of major lower extremity amputations. J

utcome following unilateral lower limb amputation. Prosthet Orthot Int. 2003; 27: 186-90. eley L, Moursi MM. Major lower extremity amputations at a Veterans Affairs hospital. Am J Surg. 2003; 186: 449-54.