Brake Response Time in Diabetic Patients with Lower Extremity Neuropathy

Kerianne E. Spiess, DPM ${ }^{\text {a }}$ and Andrew J. Meyr, DPM FACFAS ${ }^{\text {b }}$
${ }^{\text {a }}$ Resident, Temple University Hospital Podiatric Surgical Residency Program
${ }^{\text {b }}$ Associate Professor, Department of Podiatric Surgery, Temple University School of Podiatric Medicine, Philadelphia, Pennsylvania (AJMeyr@gmail.com)*

Statement of Purpose and Literature Review
The presentation of diabetic neuropathy is as a symmetrical sensorimotor polyneuropathy preferentially affecting the lower extremities. The most apparent effects of this occur within the sensory system and contribute to the development of pedal ulcerations, lower extremity infection, and both minor and major limb amputations. However, involvement of the motor system also carries the potential for significant clinical pathology. Lower extremity weakness, muscular atrophy, slowing of movements, unstable gait and an increased frequency of falls have all been associated with diabetic motor neuropathy. Additionally, and distinct from the lower extremity, general auditory and visual reaction times have been demonstrated to be impaired in the presence of diabetes.
Further, the effect of lower extremity pathology and surgical intervention on driving function and brake response times has been a topic of contemporary interest within the medical literature. Several authors have published general guidelines about the return to driving following elective and non-elective lower extremity surgery, while others have specifically studied the effect of chronic musculoskeletal lower extremity pathology and immobilization devices on driving outcomes. Despite this, we are unaware of any specific analysis into the effects of diabetic neuropathy and diabetic foot disease on driving parameters.
The objective of this investigation was to assess brake response times in diabetics with neuropathy. We aimed to determine whether diabetics with neuropathy have slower brake reaction times than normative values and published safety thresholds.

Results
 ge 57.5 years) and 80 brake response trials. All were diabetic with a mean MNSI score of 6.2 (range 2.5-8). The mean brake response time observed was 0.710 ± 0.076 seconds. An abnormally "slow" brake response time was observed in 4 (51.3%) of 80 the trials.
The experimental group of neuropathic diabetics demonstrated a statistically slower mean brake response time (0.710 vs. 0.549 seconds; $\mathbf{p}<\mathbf{0 . 0 0 0 1}$), with "slow" reactions occurring at a greater frequency (51.3% vs. $\mathbf{3 . 0 \%}$; $\mathbf{p}<\mathbf{0 . 0 0 0 1}$)

Discussion

-We think that the results of this investigation demonstrate both clinically and statistically significant findings. Diabetic drivers with neuropathy demonstrated slower mean brake response times and had an increased frequency of "Slow" brake reactions. Although this difference was statistically
significant in comparison to a control group we think these findings are significant in comparison to a control group, we think these findings are brake response time in meuropathic diabetics was slower than an accepted threshold reported by seurces induding the United Stotes Federal Hibuay Ahreshold reported by sources inct "slow" brake responses above this deld in the We thought that these were frankly eye-opening findings that have the potetitial We though illions of drivers in the United States and worldwide.
to affect mill io affect millions of drivers in the United States and worldwide.

$\frac{\text { Some important limiting considerations... }}{\text { Brake response time represents sonly asing }}$

 distances. Our intention is not or this datat obe oconsidered definitive, bur rather
-Our experimental group should be considered pilot data at this point (n=10). Although the observed
statistically significant findings are of adequate power, it s our intention to collect data on at least 25
 riving function.
In conclusion, the results of this investigation provide unique data with respect to decreased brake response times and potentially impaired driving function in diabetics with lower extremity neuropathy.

References

